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The interaction trapping of internal gravity waves 

By 0. M. PHILLIPS 
Mechanics Department, The Johns Hopkins University 

(Received 3 April 1968) 

It is shown that as a result of their non-linear interactions, internal gravity 
waves in an unbounded fluid can be trapped to a layer of finite depth by periodic 
small variations in either the density gradient or in a weak horizontal steady 
current. This trapping occurs when the vertical component of the wave-number 
is half that of the density gradient or of the current variations. The energy density 
of the wave motion trapped near the ocean surface decreases exponentially with 
depth over a distance that is inversely proportional to the magnitude of the varia- 
tions in density gradient or in horizontal current speed. 

1. Introduction 

of stratification, described by the Brunt-Vaisala or buoyancy frequency 
The atmosphere and the oceans are almost always stably stratified. The degree 

usually varies in the vertical, often in an irregular way. Moreover, in the absence 
of topographical effects, the quasi-steady motion usually consists of steady 
horizontal streaming at speeds that may vary with height or depth. It is of interest 
to examine the influence that these variations have on the propagation of other 
internal wave disturbances in the medium. 

An account of the simple properties of small-scale internal waves has been 
given by Phillips (1966). If the buoyancy frequency N is constant in the region of 
interest, the frequency n of internal wave modes is specified by the inclination 6' 
of the wave-number to the horizontal: 

n = NcosO. 

When 6' -+ &T, n -+ 0,  so that the steady horizontally uniform disturbances of the 
ocean or atmosphere might in certain circumstances be regarded as the limit of 
zero frequency internal waves. The interaction between this motion and other 
internal waves could then be considered as a special (but rather interesting) case 
of the more general mutual interaction of internal waves, 

For the weak second-order interactions among waves, with wave-numbers 
k,, k, and k, and frequencies n,, n, and n3, the resonance conditions 

k1- k, = k3, 

n,-n, = n3, 
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must be satisfied simultaneously. In  this situation, if k, is taken vertically, 
n3 = 0; if resonant interactions are to occur 8, = 8, and the wave-numbers form 
an isosceles triangle (figure 1). At the Sixth Symposium in Naval Hydrodynamics 
in 1966 at  Washington, D.C., I presented a simple analysis of the problem from 
this point of view and some interesting and rather unexpected results emerged. 

FIGURE 1 

The interactions were studied as an initial value problem : it  was supposed that 
at  time t = 0, the motion consisted of the steady streaming superimposed on a 
uniform wave with wave-number k,, the amplitude of the third component being 
initially zero. It was found that the energy of the k, component only is transferred 
to the wave-number k,; that the steady streaming motion acts as a catalyst, 
playing an essential part in the interaction but not itself entering into the energy 
exchange. If only this triplet of wave-numbers is present, the energy flows back 
and forth between the two inclined wave-numbers as a result of their interaction 
with the third (vertical) wave-number. The net energy flux in physical space is 
then alternately upwards and downwards and this result suggested the possi- 
bility of trapping; that an irregular streaming motion might limit the vertical 
extent that internal gravity waves could propagate from their point of origin 
even if the buoyancy frequency were constant. The depth of a trapped zone was in- 
ferred by group velocity arguments; it was found to be finite for any inclination 0.  
The case was far from proved, however, since these simple solutions were to the 
initial value problem involving internal gravity wave trains that were spatially 
uniform; one purpose of this paper is to provide a more detailed discussion that 
establishes this trapping effect explicitly. 

In  commenting on this paper, Dr T. B. Benjamin (1968) presented an alterna- 
tive analysis in which the problem was viewed from the point of view of single 
scattering theory; the wave being scattered by the spatially periodic current field. 
He found that the internal wave generally attenuated by scattering within a depth 
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of the same order as that found in the previous analysis but that there was an 
exceptional case 6’ = in in which the scattering cross-section vanished-the 
waves continued to propagate without attenuation at all. Although these were 
two rather different problems (the interaction problem corresponding more 
to multiple scattering), one would have expected the results to be in qualitative 
agreement, and the appearance of the ‘window’ in Brooke Benjamin’s analysis 
but not in Phillips’s was a matter of some concern. 

It has subsequently appeared that part of the discrepancy arises from the view 
of the steady spatially periodic motion as the limit of a zero frequency internal 
wave. In  an internal gravity wave the magnitude of the variations in density 
Sp and velocity Su are intimately related 

and this relation is preserved as n + 0. In  the simple interaction analysis, then, 
there are coupled variations in both the density gradient and the horizontal 
velocity field, whereas in Brooke Benjamin’s scattering approach only velocity 
variations were considered. In  actual fact, of course, either or both can occur 
independently; it is of interest to see how the two effects separately influence 
the nature of the trapping. The exploration of this and the evaluation of its 
relevance to oceanography is the second aim of this study. 

2. The interaction equations 
Consider a region of stratified incompressible fluid in which, in the basic state, 

the buoyancy frequency N is independent of the vertical (y) co-ordinate. The x 
co-ordinate is horizontal and can most conveniently be taken to lie in the plane 
defined by the two wave-number vectors k, and k,. Only the x component of the 
steady horizontal shearing motion will be found to be relevant to the interaction; 
it will be supposed to vary periodically in the vertical with wave-number 

k, = (0, 2m, 0). 

Thus U(y) = ( U  sin 2my, 0, W(y)). (2.1) 
Associated with this there may or may not be periodic variations in the (time 
independent) density gradient about its mean value, so that in general 

( 2 . 2 )  

where y is an arbitrary phase angle. For local static stability the density gradient 
must everywhere decrease in the vertical, so that r < 1. The buoyancy of the 
fluid relative to a reference state with density po is defined as g(po -p)/po so that 
the periodic variations b in buoyancy are 

b = N 2 L ~ ~ ~ ( 2 m y + y ) .  2m (2.3) 

The gradient in mean buoyancy is, from (3.2) simply N2. 
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We are concerned with the interactions between this steady field and the pair 
of internal waves specified by figure 1. Since the x-direction was chosen to be 
orthogonal to all three wave-number vectors, the motion is independent of this 
co-ordinate, and a stream function $ can be defined such that 

7.1 = a$/ay, v = -a@rjax. (2.4) 

The vorticity equation in the stratified fluid can be expressed as 

while the continuity condition 

ge+u.vp = 0 
at 

can be expressed in terms of the buoyancy field as 

(2 .5 )  

(2.6) 

If the non-linear terms are neglected, there results the equation 

appropriate to infinibesimal internal gravity waves. Solutions of the type 

(2.7) 
$ = Acos(Zx*m.y-nt+S), 

b =  - ( N  2Z/n) A cos (Zx & my - nt + 8 )  

where 0 is the inclination of the wave-number vector to the horizontal. The 
presence of the non-linear terms in (2.5) and (2.6), however, results in a coupling 
between the two internal waves and the steady field; if the energy density of the 
wave motion is sufficiently small, the interactions will be weak and of a resonant 
kind rather than the strong indiscriminate type characteristic of turbulence in a 
stratified fluid (Phillips 1966). The exact criterion for this will emerge shortly; 
it is sufficient at this stage to anticipate that the weak interactions will result in 
variations in the wave amplitude (and possibly the phases) over scales that are 
large compared with the wavelength involved. 

We seek, in particular, solutions to the non-linear equations that represent a 
trapping of the energy of the internal waves into a region of generally 
vertical extent, characterized by some length scale e-l. Consequently, let 

$ = (2m)-lU{a cos 2my +fl(cy) cos x1 + g , ( q )  cos Cl + h,(z, y, t ) ) ,  

b = - -  {p  cos (2m y + y )  + f 2 ( V )  cos xz + g2(ey 1 cos c 2  + h2(& Y f t ) )?  
N U k  
Bm 

finite 

(2.8) 
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where U is a scale for the speed of the horizontal motion, k2 = 1, + m2, 

(i = 1 ) 2 ) ,  
xi = Zx + m y  - nt + Si(ey) 
Cj = 1% - m y  - nt + Ai(ey) (2.9) 

and h,, h, are the non-resonant products of the interaction. The dimensionless 
quantities a and /3 determine the magnitude of the steady current and the steady 
variations in the density gradient; the case (x = 1 , j9 = 2 m / k  corresponding to the 
zero frequency internal wave limit and a = 1, p = 0 to the problem of Brooke 
Benjamin. The functionsf and g specify the amplitudes of the two internal wave 
motions. The scale e-l is to be determined by the strength of the interaction; as 
e --f 0, the interaction vanishes and from (2.7) the sets of quantities fi, gi, Si and 
Ai become independent of y and equal in pairs. Moreover, with the weakly inter- 
acting waves, we would expect (2.7) to be a local representation of the wave 

(2.10) 

In  seeking solutions of this kind, the procedure is in some ways analogous to the 
two-time expansion in classical mechanics, a technique used in the past in initial 
value wave interaction problems. In  this case, however, we are concerned with 
two spatial scales-one representative of the wavelengths of the interacting 
waves and the other, E-,,  specifying the scale of depth over which the energy 
density of the field varies. 

In order to find solutions for the wave amplitudes fi and gi, we must substitute 
the expressions (2.8) into the equations of motion (2.5) and (2.6). It is found 
readily that 

V2$ = - 2 U m a c o s 2 m y -  ( U / 2 m ) ( 1 ~ + m 2 ) { f , ~ 0 ~ x ~ + g ~ c o s ~ ~ }  
- E U{ f i sin x1 - g; sin Cl +fl S; cos x1 - g, A; cos c,} 
+ E2( U j 2 m )  cos x1 + g; cos g, + . . .>. (2.11) 

Since we suppose that the scale e-l of the variation of wave amplitude is large 
compared with the vertical wavelength (2~n-1 ,  then e /2m < 1 and the terms of 
order €2 in this expression can usually be neglected. Notice, however, that these 
terms contain the highest order derivatives; the problem involves not a regular 
but a singular perturbation and we must anticipate the possibility of local regions 
of the motion where either the wave amplitude or the gradient of the amplitude 
changes sufficiently rapidly that these terms become locally comparable with 
the lower order term. 

The substitution of (2.11) and (2.8) into the vorticity equation (2.5) leads, 
after some algebra, to 

+ en U{  f cos x1 - g; cos Cl - fl S; sin x1 + g1 A; sin Cl} 
u21 
4m - ~ (12- 3m2)a{f1 cos (Cl + q5,) - g1 cos (x, - q5,)} + h = 0, (2.12) 

correct to O(e), where $, = &-Al  represents the phase difference between the 
two inclined wave trains and h the non-resonant interaction terms, those at  
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wave-numbers other than (0,2m) or ( I  k m). It is interesting to notice that in the 
non-linear terms of (2.5), the contribution involving cross-products of x1 and 
[, terms vanishes identically; no term arises in this equation to give interaction 
with the vertical wave-number 2m. 

lf, further, in the light of (2.10), we let 

f 2  = f,(d + (Wf(V), (2.13) 

with similar expressions for g,, 8, and A, defining 0, 8 and A respectively and 
substitute these into (2.12), the resulting equation has terms, each of which 
contains a factor sine or cosine of either x1 or Cl. These groups of terms can be 
separated by multiplying in turn by these factors and averaging locally and 
there result the following four equations: 

ENkl 
eng, A; + Ts fj + (Z2 - 3m2) a sin 9, 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where the wave frequency n = Nl/k .  
A similar series of substitutions into the buoyancy equation can be made. Again 

i t  is found that the non-linear terms generate no contribution to the vertical 
wave-number 2m. This fact is significant; it implies that the horizontal streaming 
motion and the variations in density gradient are not themselves affected by the 
interaction; they are catalytic in the sense that they result in an energy exchange 
between the other two wave modes but they do not themselves partake in it. 
Such a characteristic was found in the initial value, time-dependent solutions 
(Phillips 1968). In  this respect the particular type of interaction described here 
is probably better considered as a multiple scattering process in contrast with the 
more general interaction situation in which all wave-numbers participate in the 
energy exchanges. It might be noted that this situation represents an exception 
to the result given by Hasselmann (1967) that a wave motion with any wave- 
number is unstable to disturbances that form with it a resonant triad. The algebra 
involved in the substitution of (2.8) into the buoyancy equation (2.6) is straight- 
forward and leads to a further set of four equations: 

2sN 
mk U {(a - /? cosy) cos - /? sin y sin +J f, + ___ gl$ = 0, 

2637 
{(a -pcosy) sin +, +psin y cos +,}f, - mkU @ = 0, 

2€N 
{ - (a  -pcos y )  cos +/?sin y sin +,}gl +mm fla" = 0, 

ZEN ,. 
{(a - /? cos y )  sin #, + /?sin y cos q5,} g, - mmf = 0, 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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where y is the phase difference defined in (2.8) between the steady streaming and 
the variations in stratification. These equations are simply algebraic; together 
with (2.14) to (2.17) they provide eight equations for the unknown f,, 1 g,, 0; 
S,, 8 and A17 $. In  view of the purely catalytic role of the steady component of the 
motion, M: and p are constant. 

3. The motion in the trapped layer 
These field equations must be supplemented by boundary conditions for the 

motion. For the sake of definiteness, let us consider the possibility of trapping 
near the ocean surface, whose level relative to the current and density distribu- 
tion is as yet arbitrary. For internal gravity waves, the free surface condition 
can be taken as 

since the internal wave frequency is small compared with that of free surface 
waves of the same wave-number (Phillips 1966). From (2.8), then, 

f,sin (lx + mC - nt + 8,) + glsin (lx - m C -  nt + A,) = 0, 

for all x, t .  To satisfy this condition, it is necessary that the incident and reflected 
wave amplitudes be equal and the phases differ by 71: 

since 4 = 4, = 8,-A1. 
It is convenient now to specify the parameter E whose inverse describes the 

order of magnitude of the depth over which the wave amplitude varies. The field 

v = O  at y = C ,  (3 .1)  

f ,  = g , ,  2mC+$  = T ,  (3 .2)  

Ulk2 Uk3 
4mn 4Nm’  

equations suggest that 
6 = = __ (3 .3 )  

the latter equality following since n = N l / k .  Further, let 

€y = Y.  

The suffices 1 in the field equations can now be dropped and the quantities?, 0, 
$and A eliminated from (2.14), (2 .20) ,  (2.15) and (2.18). There follows 

where 

This function can be expressed alternative1 y as 

and without loss of generality, A > 0. 
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A first integral of the set (3.4) follows immediately. 

f f  - 9gt = 0, 
f 2 (  Y )  -g2( Y )  = const. 

This can be interpreted generally as expressing the constancy of the energy flux 
in the vertical direction: the vertical components of the group velocities of the 
two inclined waves being equal in magnitude but opposite in direction and the 
energy density being proportional to f and g2. Since there is no net energy flux 
across the free surface (or equivalently, from the surface condition (3.2)), the 
constant vanishes and 

throughout the region. 
f( Y )  = 9( Y )  (3-9) 

The variation in the phase difference # is specified by the remaining pairs of 
equations (2.16), (2.21) and (2.17), (2.19): 

Since q5 = 6- A and f ( Y )  = g( Y ) ,  it follows that *- 2H(#) = 0. 
d Y  

(3.10) 

(3.11) 

From this equation, it is evident that if H ( # )  = 0 at any finite depth Y ,  then 
q5 is constant in the neighbourhood and so everywhere. The only possibilities 
then are that H ( + )  = 0 throughout the region or that H(q5) has no zeros in any 
finite interval. If we suppose for the moment that the latter situation should 
obtain, equation (3.1 1) can be integrated in the form 

(3.12) 

since from (3.2), # = 7~ - 2mC when Y = EC. Now, whatever the sign of the de- 
nominator of the argument of the logarithm, as Y -+ - CQ, the angle # migrates 
to the nearest zero of the numerator; that is 

and H ( 4 )  + 0. Moreover 
# + # o  = 0, 277, ... , 

and, in virtue of (3.9), the solutions to (3.4) diverge exponentially as Y- t  -m. 
Consequently, we are forced to conclude that d#/d Y = 0 and H ( # )  = 0 every- 
where, the appropriate roots now being 

Then 

and 

#+#o = 77, .... 
aH(#)/a# = - A  

f ( Y )  = g( Y )  = const. e A Y ,  (3.13) 
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where A is given by (3.7). The attentuation depth L is (eA)-l, or 
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(3.14) 

The remaining free surface condition (3.2) can be satisfied by appropriate choice 
of the (as yet) arbitrary level of the free surface 

c = $4)/2m. 

These solutions describe, as we anticipated, a trapping of the internal waves 
by their interaction with (or multiple scattering by) the variations in horizontal 
current or density stratification. The amplitudes of the two internal wave 
components decrease exponentially with depth 

f = 9 = exp (Y/L), (3.15) 

and the energy density is proportional to exp (2ylL). 
Several special cases of interest can be drawn from these results. If, as con- 

sidered by Brooke Benjamin, the mean density gradient is uniform and the 
steady current distribution has the maximum value U cos $ in the x-direction, 
then p = 0 and a = cos $. Thus, from (3.14), 

2Nm 
U k  cos #1Z2 - ?n21 ’ 

L =  .__~. - 

This can be expressed in terms of 2m, the vertical wave-number of the current 
field and the angle of inclination 8 of the waves to the horizontal. Since 

k = m/sin 8, 1 = n~ cot 8, 

(3.16) 

precisely as given by Brooke Benjamin. As he pointed out, a notable property 
of this solution is the existence of a ‘window ’ for the transmission of waves when 
8 = &T and n = N /  J2 ;  at this particular frequency the coupling between the 
variations in current and the waves vanishes and the waves can propagate 
without interaction. At all other frequencies with the appropriate wavelengths, 
the depth of the trapped layer is finite and the energy is restricted by multiple 
scattering to a region of depth 2L. 

Another case of interest is found when the steady horizontal velocity field 
vanishes (so that a = 0) but there are periodic variations in the basic density 
gradient. If the mean buoyancy gradient is given by 

(3.17) 

then, by comparison with (3.8), it follows that 
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and the penetration depth 
4Nm 4m L=-- . -  
pUk3- k 2 r )  

8 
(2m) r 

=- sin2 6, (3.18) 

in terms of the vertical wave-number (2m) of the density striations. Clearly, to 
guarantee static stability of the distribution (3.17) it is necessary that r < 1; for 
the two scale analysis to be valid with 2mL S 1, the stronger condition r < 1 is 
required. In  this case, there is no ‘window ’, the maximum depth of the trapped 
layer being found when 0 -+ Q ~ T  and n --f 0. 

Again, when the steady horizontal velocity and density variation fields are 
related as in the limit of an internal gravity wave of zero-frequency 

U 
2m 

$h = -cos2my, 

b = - N U  cos Zmy, 

it follows by comparison with (2.8) that a = 1, y = 0, p = 2m/k. The penetration 

2Nni - .________ ~~. ~ - 
UP( 1 -sin 8) (1 + 2 sin 8) ’ 

where, again, 8 is the inclination of the wave-number k to the horizontal and 

sin3 8 __ __.___ - 
8N 

sin0 = m/k. Thus 
L=-  

(2m)2U (1 - sin 6) (1 + 2 sin 0) ’ (3.19) 

which, again, is finite when 0 < 0 < tn. This result differs in detail from the one 
given earlier (Phillips 1968) because of an algebraic slip there in the calculation 
of the coupling coefficient, but again there is no ‘window’. In  fact, the general 
result (3.14) shows that the situation noted by Brooke Benjamin in which 
/3 = 0 is the only one where this ‘window ’ appears. 

Finally, it might be noted that if both a and /3 vanish, then L -+ 00. Two internal 
waves of the same frequency are mutually transparent; they pass through one 
another without interaction in a uniformly stratified fluid at  rest. 
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